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Abstrac.t

The Independent Component Analysis is a recently developed technique for component

extraction. This new method requires the statistical independence of the extracted components,

a stronger constraint that uses higher-order statistics, instead of the classical decorrdation, a

weaker constraint that uses only second-order statistics. This technique has been used recently

for the analysis of geophysical time series with the goal of investigating the causes of variability

in observed data (i.e. exploratory approach). We demonstrate with a data simulation

experiment that, if initialized with a Principal Component Analysis, the Independent

Component Analysis performs a rotation of the classical PCA (or EOF) solution. This rotation
uses no localization criterion like other Rotation Techniques (RT), only the global generalization

of decorrelation by statistical independence is used. This rotation of the PCA solution seems to

be able to solve the tendency of PCA to mix several physical phenomena, even when the signal is

just their linear sum.



1. Introduction

This work concerns methods for the investigation

of the physical causes of variability of a dynamical

system, e.g., the climate, from observations of its be-

havior. The observed time series of the system's state

can be produced by a mixture of different compo-
nents representing different physical processes. In the

most general case, the time series, x(j), with tempo-

ral dimension, N, at a particular spatial coordinate,
j E {1,..., M}, where M is the spatial dimension, is

the result of the mixture of these components, a(j),
by an operator G:

x(j) = G(a(j)). (1)

In this paper we use lower (upper) case bold letters
to indicate vectors (matrices) and we will refer to a

particular spatial location as a pixel. We consider

decomposition in time (i.e., the observations, x(j),

are time series at each pixel, j), but the following
discussion would be the same for a decomposition in

space.

The goal of the analysis method is to infer the t n-

known contributing components, a(j), from the c o-

served data, x(j). Often in performing such an an,.l-

ysis, one does not know a priori much about what
is like, even whether it is linear or not. We introdu-:e

h = fl(x) __ a, (2)

where ,7 is an estimate of the unknown inverse map-
ping, G -1 , and h is an estimate of the unknown vector

a. Analysis methods that estimate ,7 and h are called

component extraction techniques.

If G is nonlinear and cannot be usefully linearized,

then we are faced with a component extraction prob-

lem that is highly complex for many reasons. First,

the definition of a well-adapted nonlinear component

extraction model, `7, is difficult without some a pri-

ori information about the nonlinear mixture model,
_. Using generic statistical models for the nonlin-

ear regressions of ,7 often introduces too many de-

grees of freedom, which ruins the inference process.

Second, the determination of the extracted compo-

nents is much more complex since the basis functions,

gi(a(j)), vary with location, j. Third, the uniqueness

of the result and its interpretation in physical-process
terms is difficult to demonstrate. Some nonlinear

techniques have been developed (Monahan 2000) but

their main application is to represent complex data in

a more compact way (i.e., compression). Here, we are

not concerned with this use of such techniques, but

with their use to extract "meaningful" (i.e. causal)

components to understand how a dynamical system
works. Currently, all the "classical" (and most fre-

quently used) extraction methods are linear; the use

of nonlinear models in (4) for component extraction

is only just beginning. The nonlinear case is beyond
the scope of this paper.

One approach to simplify the analysis that may

when G is complex is to linearize (1) using G(a°(j)),

the Jacobian matrix of the nonlinear operator G near
a particular state, a°(j):

Ax(j) = G(o'°(j)) . Ao'(j) (3)

= 91 (°'° (J))'Aal (J)+g2(cr°(j))'Aa2(j)+ "" "+9O(a°(j))'AaQ(j)

(4)
where the temporal basis functions, g l(a ° (j)),..., gV (a ° (j)),
which are the columns of the matrix G(cr°(j)), are

unknown time series describing a fixed dynamical be-

havior at each pixel, j. Each gi(a°(j)) is the temporal

response to a perturbation Aa,(j) of i th component

at pixel, j, when the state is given by er°(j). For ex-

ample, in the case where the physical component, i,

is an oscillating wave propagating in space, the time
series gi(er°(j)) have the same shape as the source,

but with _ time delay dependent on the distance be-

tween their location at pixel, j, and the source of the
wave.

When _ is known a priori to be linear or has been

linearized to G, the equivalent to (1)-(4) when the

time series, x(j), at particular spatial coordinate, j E
{1,..., M}, is decomposed in time, is:

x(j) = G. o'(j) = gl al (j) + g2a2(j) +... + gQffQ(j),

(5)
where the temporal basis flmctions, gl,..., gQ, which
are the columns of matrix G, are unknown time series

describing a fixed dynamical behavior. In contrast

with the nonlinear case, the basis functions, gi, are

independent of the geographical location, j. Each gi
could be a signal with a different physical cause oper-

ative in a particular geographical region represented

by a different component map {ai(j) ; j = 1,... M}.
The goal of the analysis is to infer the unknown con-

tributing components, a(j), from the observed data,

x(j). In the linear case, we write (2) as

h = J.x __ a, (6)

where J is an estimate of the unknown matrix G-

(the superscript -1 represents the pseudo-inverse if

G is not square) and h is an estimate of the unknown

vector a. The ability of statistical analysis techniques



to retrievegoodestimates,h, of the true components,

a, is highly dependent on the quality of the statistical

dataset used (i.e., sufficiently large number of inde-

pendent examples is needed to sample all the varia,

tions involved) and on the technical assumptions that
are made about J and h.

There are many techniques that have been devel-

oped to estimate J and h. The one most frequently

used by the climate research community today is the

Principal Components Analysis (PCA) or Empirical

Orthogonal Function (EOF) method (Lorentz 1951;
yon Storch and Frankignoul 1998). Sometimes, mod-

ifications of this method are used that either apply

some other criterion besides maximizing the variance

explained by each component or relax the require-

ment for orthogonal basis functions. These _ ethods
use this additional information to rotate, orthogonally

or obliquely, the solution of a previous PCA; we refer

to this large set of methods as Rotational Techniques

(RT) (see Hotel 1981; Richman 1986). We formulate

a general linear case and the classical analysis tech-

niques in Section 2. We will show some of the known
difficulties of the PCA solution (Karl et al. 1982;

Richman 1986) that have led to the development of

the rotational techniques.

The Independent Component Analysis (ICA) is in-

troduced in Section 3. This method is based on infor-

mation theory and has been recently developed in the

context of signal processing studies and of the devel-

opment of neural coding models (Jutten and Heraut

1991; Atick 1999; Bell and Sejnowski 1995). This

technique has now been studied for some time by the

statistical analysis research community and many re-

cent applications of the ICA paradigm can be found
in the ICA '99 proceedings (Cardoso et al. 1999) or

(Hyviirinen and Oja 2000), but this method has not

been used for analysis of climatological observations

(see, Aires et al. 2000) The two major distinctions be-

tween the ICA approach and the classical techniques

are:

The method extracts statistically independent

components, even if these components have non-

Gaussian probability distribution functions, by

making use of higher-order statistics, whereas
the PCA or RT approaches use only second-

order statistics.

A linear mixture model is not assumed; any

extraction model could be used with the ICA

paradigm (Burel 1992), which allows the intro-

duction of pertinent a priori information about

the mixture model, if it is available.

We will show that the "linear" (this term will be

explained in the following) and PCA-initialized form
of ICA, described here, performs a rotation of the

PCA solution, eliminating the mixing problem: PCA

has the tendency to mix several components, even

when the signal is just their linear sum. We argue

that, because of certain general features of the ICA

approach, it is a particularly promising technique for
rotations of the PCA solution. Furthermore, a previ-

ous study that applies a similar ICA to the analysis

of variations of tropical sea surface temperature time

series (Aires et al. 2000) illustrates its potential to

separate a geophysical time series into more mean-

ingful components.

To illustrate most clearly how ICA avoids the com-

ponent mixing problem, we construct a synthetic

dataset, where the true answer to the decomposition

problem is known, and apply PCA-initialized Inde-

pendent Component Analysis to extract components

(Section 4). We have deliberately devised a dataset
with certain characteristics to challenge whether ICA

can separate distinct modes of variability. In partic-

ular, the synthetic dataset is formed by a linear sum

of components, some of which are well-separated in

space and time, some of which overlap and some of

which represent teleconnections. This dataset is then
created so that it has the structure that linear compo-

nent extraction techniques search for. We show that,

even in the linear case, the PCA technique mixes the

components, but that the ICA method performs a ro-

tation to correctly separate the components.

The goals of this paper are then to illustrate some

of the problems of classical analyses, even in the sim-

ple linear case, and to introduce a new component
extraction technique that overcomes these problems,

at least in its linear form (Section 5). We compare
linear-ICA to PCA to measure the effect of the rota-

tion transformation by the ICA algorithm. We apply

these methods to a synthetic dataset, rather than to

an actual geophysical dataset, so that the true an-

swer is known independently and so that we can illus-

trate several specific features of the component mix-

ing problem. We do not use a priori information for

the component extraction experiments since we are
interested in exploratory techniques, not confirmatory

ones, i.e. we wabt a technique to find the correct, but

unknown components, not confirm results from other

analysis.



2. The Linear Case and Classical

Component Extraction Techniques

A common approach for statistical component ex-

traction is to require the decorrelation of the ex-

tracted components, in which case the covariance ma-
trix of extracted components < h t .h > is constrained

to be diagonal; but this decorrelation constraint has

an infinity of solutions because

J = o. J0, (7)

where O is any undetermined Q x Q matrix so that

0 t.O=IQ×Q. Jo=lE -1/2"E t isaQ×Nmatrix

with IE the truncated diagonal matrix of the higher

(in decreasing order) eigenvalues of < x t • ac > and
E the N × Q matrix with the associated normalized

eigenvectors in the columns.

One particular decorrelation solution is the well-

known Principal Component Analysis (PCA) or, in

the geophysical conmmnity, Empirical Orthogonal

Function 1 (EOF), first used in atmospheric sciences

by Lorenz (1951). In this technique, an additional

constraint is added to resolve the indeterminacy of the
decorrelation solutions: the successive extracted com-

ponents have to explain the maximum remaining vari-

ance. This solution is given by taking O = IQ×Q in
Equation (7). Depending on which space the PCA is

applied to (space, time, frequency, nmltivariate data,

etc), the PCA has also been called Singular Spec-

trum Analysis (Broomhead and King 1986; Vautard et

al. 1992), Multi-channel Singular Spectrum Analysis

(Vautard et al. 1997), Extended Empirical Orthogo-

nal Functions (Korres et al. 2000), Multivariate Em-

pirical Orthogonal Function (Xue et al. 2000), etc.

Three well-known problems arise when using the

PCA technique. (1) Even if the mixing of the compo-

nents is linear as in Eq. (5), the maximum-explained-

variance assumption can lead to a different mixing in

the extracted components (Kim and Wu 1999) as we
will be shown here (see Figure la for an schematic

illustration of this problem in a 2-dimensional case).

(2) This mixing problem is also particularly serious
when the PCA is applied to data that have more

than one component with about the same variance.

In this case, the problem is not solvable since any or-

thogonal rotation of the principal components (i.e.,
in the space of the "degenerate" eigenvectors) will be

a PCA solution (Figure lb). (3) Since PCA imposes

IEOF is a specific form of the general PCA were the ex-
tracted basis functions are normalized.
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orthogonality on the extracted basis functions, mix-

ing problems also arise when the actual physical ba-

sis functions are not orthogonal (Figure lc). Another

problem for the application of the PCA to geophysical

data arises from an irregularly spaced grid of pixels

that can lead to distorted basis functions (Karl et al.
1982).

The PCA assumptions (linearity, orthogonality,
maximum variance explained by each successive com-

ponent) used to resolve the solution indeterminacy

are not known, a priori, to be valid for a particular
dataset. If these assumptions are not valid, variations

that are not physically connected could be artificially

mixed together into one extracted component (i.e.,
the mixing problem). This is the reason why PCA is

often used in restricted geographical domains instead

of global domains or applied to pre-filtered data to try

to isolate a single dominant mode of variation, which

PCA can correctl3 identify. Thus, although PCA is

useful for compres._ ing information by describing the

most variance wit}, the fewest terms in an expansion

(as a dimension-re _,uction/compression technique), it

can lead to misinte:pretation of physical relationships

when used as a component extraction technique.

Rotational Tech.fiques (RT) were intreduced (Hotel

1981; Richman 19_1), in part, to obtain a more phys-
ically interpretable solution and to avoid some of the

problems of PCA. in these approaches, an additional

constraint of localization, based on the so-called "sim-

ple structure" principle, is used to solve the indeter-
minacy of the decorrelation solutions. The rotation

can be orthogonal (the rotation matrix is an orthog-

onal matrix) or oblique (this constraint is relaxed).
There exist many proposed localizaticm criteria: quar-

timax, varimax, transvarimax, quartimin, oblimax,

etc (see the review paper of Richman (1986) on this

subject). Two general distinct classes of RT solution

can be distinguished: confirmatory RT where a pri-
ori information about the components is available and

we want to verify the hypothesis, and exploratory RT

where almost no a priori information on the prob-

lem is available. We are interested, in this study, in
the exploratory case where no a priori information

is available. Since there is no general principle for
choosing a particular localization criterion from this

large set of proposed solutions is available, use if a

particular RT method in exploratory mode may be

equivalent to introducing a priori information about
the localization that may not be well suited to the

particular problem.

We describe here the most commonly used criterion



fororthogonalrotation:

v,(a) = Z - , (8)
j=l i=1 "=

where the constant 7 gives a family of rotations, with

7 = 1.0 giving varimax rotations, and 7 = 0.0 giving

quartimax rotations. The implementation of these
techniques is not trivial, but automatic routines are

available (see, for example, the routine G03BAF in

the NAG Fortran Library Routine Document).

Despite the proposed alternatives to the variance

maximization assumption and the orthogonality con-

straint used in various RT methods, they still all share

two fundamental properties with PCA: they assume

that the meaningful components are linearly mixed

(classical techniques are intimately linked to the lin-
ear assumtion and can not be generelized to nonlinear

models) and that only second order statistics need be
evaluated.

3. The Independent Component

Analysis technique

In this section, we introduce the main concepts un-

derlying the Independent Component Analysis (ICA)

technique. For more details, the interested reader is
referred to Bell et al. (1995) and Aires et al. (2000).

The ICA technique aims to extract statistically inde-

pendent components, a stronger constraint than the
decorrelation requirement of the PCA.

The statistical independence of two variables, hi

and h2, is determined when their joint distribution
can be factored:

P(hl, h2) = P(hl). P(h2). (9)

This constraint involves higher-order statistics whereas

the decorrelation constraint only involves second-order

statistics (i.e., mean and variance). Decorrelation

is equivalent to statistical independence only in the
case where the quantities are Gaussian distributed,

so the higher-order statistics are particularly impor-
tant when the analyzed data have components with

non-Gaussian distributions (Comon 1994). Avoiding

the a priori assumption that second-order statistics
are sufficient is important when the components are

unknown as is usually the case.

It is also important to distinguish the non-Gaussian

character of the components, a, with the non-Gaussian

character of the data, x, itself in Eq. (5). If

the data have a non-Gaussian distribution, then at

least one component is also non-Gaussian, since for

the simplest linear mixture of Gaussian components,
the distribution would be Gaussian, but a non-linear

combination of Gaussian distributions could be non-

Gaussian. Some previous studies examine this non-

Gaussian behavior in the data (Burgers and Stephen-

son 1999; Aires et al. 2000).

A variable is characterized by all its statistical cu-

mulants: the first cumulant is the mean, the sec-

ond cumulant is the variance, the third cumulant

is the skewness, the fourth cumulant is the kurto-

sis, etc (Press et al., 1992). For Gaussian variables,

cumulants higher than 2 are zero. When data have

zero-mean, the "skewness" skew(X) = <x_> and

the "kurtosis" kurt(X) = <x4> -3. These cumu-

lants are often used to test a departure from Gaus-

sian behavior. The skewness measures the symme-

try of the probability distribution function: when the
skewness is positive, larger events are more proba-

ble then smaller events, and the reverse is true when

the skewness is negative. The kurtosis is a measure

of the sharpness of the distribution: a negative kur-
tosis indicates that the distribution has a broaderh

central peak and larger tails than a Gaussian distribu-

tion (sub-Gaussian), a positive kurtosis indicates that

the distribution has a sharper central peak (super-

Gaussian distribution). The non-Gaussian character

of a variable is intimately linked to nonlinear dynam-

ics (Palmer 1999). For example, a nonlinear dynam-

ical system with two atractors can result in binomial

distributions. Thus, without a priori information on

the Gaussianity of components in an analysis of geo-

physical time series, the use of ICA is recommended

since its requirement of statistical independence is

more general than the decorrelation assumption.

The time series observations are gathered into a

dataset, Xj t, of M observations, x(j) = (xj _ ; t =

1,...,N), with j E {1,...,M}, where M is the spa-
tial dimension of the time series and N is its tempo-

ral dimension. The times series, x(j), is assumed to

be a mixture of statistically indepenc2ent components

a={ai; i=l,...,Q}:

x(j) = 6(a(j)) (10)

where G is an unknown mixture operator, which is,

by hypothesis, non-singular (i.e. it can be inverted).

The goal of ICA is to retrieve a function J : z -* h,

where h is an estimate of a and the terms {hi ; i =

1,..., Q} are statistically independent. The estimate,

h, is defined as a deterministic function (linear or not)



of theobservations:

hi = Ji(Wi,z) ; i= 1,...,0 (11)

where {W, ; i = 1 .... , Q} is the set of parameters

of/7. As in RT, the number of components, Q, is
here supposed to be known. This number can be es-

timated, in easy cases, by a break in the frequency

spectrum of the data; for more difficult spectra, see

for example (Joliffe 1986). With real observations, Q

depends on the analysis objectives: extracting a lot

of components allows for more complete description
of the variability but makes the interpretation much

more complicated, whereas extracting fewer compo-
nents focuses attention on fewer different phenomena

at the cost of explaining less of the variability. The
reader interested in this t(_T_icshould refer to an arti-

cle by Nadal et al. (2000).

The parameters, Wi, are estimated by apply-
ing a gradient descent algorithm to a cost func-

tion that specifies the statistical independence of the

{hi ; i = 1,...,Q}. Different equivalent cost func-

tions can be used; we use here the in/omaz approach
to ICA (Nadal and Parga 1994) from which simple

algorithms have been derived (Bell and Sejnowski

1995). Information theory is used to specifl, the sta-
tistical independence cost function: the fundamen-

tal quantity is information redundancy. Given Q

variables, hi, h2 ..... hQ, the information redundancy,
_(hl, h2 .... , hQ), is defined as the Kullback diver-

gence (Daeunha-Castelle and Duflo 1982) between the

joint distribution, Ph(hl, h2,..., hQ), and the factor-

ized distribution, Pl(hl)" P2(h2)... PQ(hQ):

+_ Q Ph(h)re(h) = I-I dh, Ph(h) log (12)
-oc ,=1 I-I_=l Pi(hi)

This information redundancy measures the differ-

ence between the joint and the factorized distribu-

tion: when the redundancy _(h) = 0, Ph(h) =

YI?=I Pi(hi), which means, by the definition in equa-

tion (9), that the components of vector h are sta-

tistically independent. An important remark is that,
since no geometric constraint on the basis functions is

specified in the redundancy quality criterion of (12),
the base functions extracted by ICA, in contrast to

PCA, can be non-orthogonal.

A statistical regression model for the extraction

model in Equation (11) has to be specified. For the

nonlinear mixture case the regression model needs to

be nonlinear in order to simulate G-1. The Multi-

Layer Perceptron (MLP), an artificial Neural Network

model, could be chosen for such a case. The nonlinear

mixture case will be the subject of future work.

In that present linear mixture case, we use a sim-

pler MLP architecture with no hidden layers as the

extraction model. This neural mapping is defined by
(from right to left in Figure 2):

y = f(h) = f(J .x), (13)

where ] is the logistic function (nonlinear, bounded,
and invertible). This model is basically a linear

model, but it employes a nonlinear logistic function.
A nonlinear f is used, even if the mixture model is tin-

ear, for algorithmic considerations (Nadal and Parga
1994): to obtain statistical independence, the manip-

ulation of higher moments (like < hi a >,< hi 4 >

, < hi 5 >, ...) is required. Applying nonlinear fi

to the hi's allows one to include these higher-order

moments because the Taylor expansion of ](h) uses
higher powers of the hi values. So we consider a non-

linear transformation (postfiltering step) on th,. esti-

mator h = J • x: the extracted components a;e not

the output y or the neural mapping (13), bl,_ the
vector h = J • x.

The parameters, W_, defining the matrix _, and
the optimal transfer functions f have to be _,eter-

mined by minimizing the redundancy criterion in
(12). Practically, it has been demonstrated in vari-

ous applications (Bell and Sejnowski 1995) that full

optimization of the transfer functions is not necessary

for performing ICA. Although promising results have

been obtained, this analysis strategy can be improved
by introducing some partial adaptation of the trans-

fer functions to that particular problem. We use here

the classical sigmoide function f(x) = 1/(1 + e -a*_)
that has proven generally usefull.

With the information redundancy reduction cri-

terion, (12), and a no-hidden-layer architecture, a
straightforward algorithmic implementation of the

ICA has been found (Bell and Sejnowski 1995) to es-
timate the matrix J:

Jik(n+ 1) = Jik(n)+p(n)(J,k +_i "ZJ_, 'ht) (14)
1

where Jik (n) is an element of the matrix J at step n of
the gradient descent, p is the learning rate parameter
of the gradient descent, and

0 Cgyi 0 Oyi

_i - Oyi Ohi ohiln(-o'_i ) = 1 - 2yi. (15)

This algorithm is described in a more practical way



in the appendix2. Notethat, althoughthetheory
behindthisanalysismethodmayseencomplex,the
actualcomputationalprocedurethat resultsfor the
linearcaseisrelativelysimple.

ICA canbeappliedto therawdata,x(j), but it

has been shown (Nadal et al. 2000; Aires et al. 2000)

that a PCA pre-processing of observations makes the

gradient descent step stabler and faster. The N-

dimensional data, x(j), is projected onto its first N'

(where N' < N) principal components using the ma-
trix J0 of PCA: observation noise is reduced and fewer

free parameters need to be estimated because the di-

mensions of the matrix J are considerably reduced,

from Q x N to Q x N' The dimension of the com-

pression N' is chosen to be equal to Q, the number

of extracted components, thus, J is a Q x Q matrix.

The PCA-compression pre-processing step does not

alter the components extracted by ICA if the neg-

ligected components (including noise) are the statis-

tically weak sources (see Nadal et al. 2000 for a def-

inition of the term "weak"). In this configuration,

the ICA ,.an be considered equivalent to performing

an obliqu,:rotation of the PCA solution by generaliz-

ing decor:elation to statistical independence, but no

additiona: criterion must be selected from among a

large number of possibilities like the localization con-
straint in classical RT. The rotation matrix of the

PCA solu ion J0 is the ICA solution Q × Q matrix
J. If the real physical components are Gaussian-

distribute,t, then decorrelation is sufficient and the

ICA algorithm would not change the PCA solution

since zero-gradient is already reached. In the case

where the components are non-Gaussian, the ICA

rotates the initial PCA solution. So ICA improves

the PCA solution only in the non-Gaussian case. We

note that there are many examples in the literature

showing non-Gaussian distributions of climate param-

eters (e.g., cloud optical thickness (Rossow and Sehi]-

]'er 1991), precipitation water path (Lin and Rossow

1996) abd SST (Aires et al. 2000)).

2See also the web page
http://www.cnksalk.edu/_tewon/ica_cnl.html of the Compu-
tational Neuroscience Laborabory of Terry Sejnowski at The
Salk Institute for links to recent |iterature, software and demos
concerning the ICA paraxtigm.

4. Application to a linear sum of

components

a. Construction of the synthetic dataset

Geophysical time series have been analyzed by lin-

ear statistical extraction techniques for decades. The

synthetic dataset used in this study is generated to

mimic the apparent expectations of such an analy-

sis approach, namely, that the observations are a lin-

ear sum of modes with very different space and time

variations and, so, are separable by such an analysis.

However, we also include two modes that are spatially

overlapped, but with different time behaviors, and

two spatially separated modes with the same time be-

havior representing a teleconnection. We st lect Q = 6

components representing six different dym nfcal phe-

nomena, each described by a different temporal basis

function, gi (solid lines in Figure 3), constructed from

composites of sinusoids with different frequencies and
phases. Each basis function has been normalized to

give a temporal standard deviation of unity. The tem-

poral dimension of these basis functions is taken to

be N = 365 (e.g., one year of daily data). A spatial

resolution of 2.50 × 2.50 is chosen, corresponding to
M = 144 × 72 = 10368 pixels. Finally, the dataset,

Xj t = {x(j) E R g ; j = 1,...,M}, where R N is

the space of real vectors of dimension N, N -- 365

and M = 10368, is formed from the time series x(j)
for each pixel j by the linear sum of the basis func-

tions, x(j) = glal(j) + ... + gQaQ(j) + _ (linear
model of Eq. 5). The term E is Gaussian-distributed

noise (zero mean and standard-deviation of 0.5), rep-

resenting very noisy data as might be the case when
analysing climate anomalies.

The {a_(j) ; i = 1,...,Q} indicate the strength

of each component, i, at each pixel, j, i.e., the spa-

tial distributions. These strengths are constructed to

have a geographical Gaussian distribution, giving a
different ellipsoidal distribution for each component

(left column in Figure 4). Artificial land contours are

introduced in the display of o_ for easier description

of the modes. One of the components has two peaks

in its spatial distribution (near the Americas) to rep-
resent a teleconnection pattern (map of component 1

in left column of Figure 4), so the total number of

ellipsoidal peaks is seven. Also, the geographical ex-

tent of two of the components overlaps in the Indian

Ocean (maps of components 4 and 6 in left column

of Figure 4) to complicate the component extraction

process.

The variance contributed by the Q = 6 compo-



nentsandtheaddednoiseareshownin Table1: the
components produce 67 % of the total variance and

the noise produces 33 %. The total variance of a

component results from the combination of the tem-

poral variability of the basis function (as a function of

normalized amplitude and frequency) and the spatial

extent of the component.

b. Results of PCA and ICA

The PCA components are determined by comput-

ing the matrix J0. The best number of PCA compo-

nents to extract is determined here by observing the
spectrum of cumulative percent of variance explained

by the PCA components (Figure 5). More sophisti-

cated criteria have been developed to determine the

number of significant components (see for example

(Joliffe 1986)). The first Q = 6 PCA components
represent 67.7 % of the total variance and the 359

remaining components explain equal portions of the

remaining 32.3 % of the total variance, representing

the noise in the dataset. The PCA temporal basis

functions (crossed lines in Figure 3) are each com-
pared with the real basis function to which it best

corresponds. PCA basis functions 2, 3 and 4 provide
a relatively good estimate of the true functions, al-

though there are some errors near the peak values.

PCA temporal basis functions 1, 5 and 6 (low fre-

quencies) are much worse fits. In particular, higher
frequencies have been mixed into the real basis func-
tions.

The corresponding PCA component maps are de-

fined at pixel j by the values (al .... aQ)(j) = do.X S
and are shown in Figure 4 (middle column), where
X3* is the j,h colmnn of data matrix X. We see that

the PCA (or EOF) technique confuses elements from

the different components, the general mixing problem,

such that all of its components exhibit many more ge-

ographic peaks than in the real components. Even if
the corresponding PCA temporal basis function is rel-

atively well retrieved, the corresponding component

map still exhibits the mixing problem (see expecially
PCA basis function 2 in Figure 3 and the correspond-

ing PCA component map in Figure 4). One cause of

the mixing is well illustrated in Table 1 where the vari-

ance explained by each PCA component is compared

to the variance of the actual components. The first

PCA component explains 24.4 % of the total variance,
which is much more than its true variance of 13.3 %.

The 6 lh PCA component represents only 3.1% which
is a considerable underestimate of the real value of

10 %. Thus, the variance maximization constraint

on the solution in PCA shifts signal from other com-

ponents into the first component, producing a mix-
ture of many true component variabilities. The noise

level estimate of 32.3 % is a good estimate, but its
small under-estimate of the real noise is due to the

projection of noise into the first 6 PCA components

(representing 0.7 %).

Particularly notable in Figure 4 is that if not ro-

tated the mixing tendency of the PCA could suggest
many more teleconnections in observations than are

actually present. Since in this synthetic case all six

components contribute roughly the same amount of

variance (10-13 %), the PCA technique has combined

many of the actually-separate components into sev-

eral of its components, trying to maximize the amount

of variance explained by each. However, the method is

then compelled to alternate positive and negative val-

ues to compensate for having too much variance when

the components are added back together. This effect

is especially apparent for the overlapping components

in the Indian Ocean: two PCA basis functions possess
broad central peaks spanning the geographic distri-

bution of both of the real components and two oth-

ers possess, in this same location, two opposite-signed
peaks (see PCA component maps of components 1,4,

5 and 6 in Figure 4, middle column). The alternating
positives and negatives in PCA are partly the result

of the orthogonality constraint. A similar projection
of real components into more than one PCA com-

ponent occurs when a geographically isolated mode

moves during the time period (Kim and Wu 1999).

Moreover, the component with two peaks near the
Americas, representing a real teleconnection, shows

up in four of the PCA components (components 1, 3,

4 and 6 in Figure 4, middle column), but mixed with
other components as well, suggesting teleconnections
between the Americas and the South Atlantic and In-
dian Oceans that do not exist.

ICA can be applied directly to the raw data, x(j),

but, as previously commented in Nadal et al. (2000)

and more briefly at the end of section 0, a PCA

pre-processing of observations makes the gradient de-
scent step numerically stabler and faster. So the ob-

served data, x(j), are first projected onto the first

Q = 6 PCA components using the matrix J0. The

ICA technique is then applied to the pre-processed

data, it(j) = Jo " x(j) (dimension Q = 6 instead of

N = 365). As explained in section 0, this is equiva-
lent to performing a rotation on the PCA initial solu-

tion where the rotation matrix is the Q x Q-matrix J
of the ICA solution. Thus the 6 ICA extracted com-



ponentsexplainthesameamountofvarianceasthe
6PCAcomponents(67.7%).

A varimaxrotationof the PCAsolution(a RT
method)hasalsobeenobtainedfor this case.Re-
sults(notshown)areimprovedfor someofthecom-
ponentssincetherealcomponentsaregeographically
welllocalized,but themixingproblemstill remains.

Thesix ICA basisfunctionsareshownin Figure
3 (dottedlines). TheICA basisfunctionsarevery
similarto the real basisfunctions.This compari-
sonshowshowtheICA techniquehascorrectedits
firstguess(thePCAsolution)tobeclosertothetrue
solution.Theadditionalinformationobtainedfrom
therequirementfor statisticalindependenceisnicely
illustrated:theICA techniquehastransformedthe
PCAinitial solutionfor a betterretrievalof all six
components.TheICAcomponentmapsarepresented
in Figure4 (right column).Generally,thecompo-
nentsarewell-retrievedandseparatedeventhetele-
connectionmode(ICAcomponent1inFigure4,right
column)andthetwooverlappingmodes in the Indian

Ocean (ICA component 4 and 6 in i igure 4, right

column). The transformation of the Pc_,A component

maps by ICA is always an improvemel t.

An experiment was conducted with ;he same data

but without the noise (not shown). 3he ICA sepa-

rates the original six modes almost perfectly and the

ICA solution is very close to the real solution. This re-

sult indicates that the presence of measurement noise

in a dataset will produce a small amount of mode

mixing even in the ICA solution; however the results

shown here (small hints of other modes in ICA com-

ponent 4 and 6 in Figure 4, right column) is produced

by a situation where the signal to noise ratio is only

about two. Although this situation may be relevant

to climate studies, ICA can separate most of the noise

into its own statistically independent mode.

Table 1 shows that the variance explained by the

ICA components is much closer to the real solution
than the initial PCA components: the variance ex-

plained by the first couple of modes decrease and that

retained by the remaining modes increase. Differences
between the true and ICA explained variance for each

component are less than 0.6 %, where the discrepan-
cies are the result of the projection of some part of

the noise into the ICA components.

5. Concluding remarks

For extraction of physically meaningful modes from

observations, where the characteristics of the system's

dynamics are not (well-) known, identifying statisti-

cally independent variation modes seems to be a sen-
sible alternative for the rotation of a first PCA (i.e.

EOF) solution which is sensitive to the mixing prob-

lem. Our simple example shows that in the most gen-

eral, though still linear case (the most favorable con-

dition for PCA), PCA wilt mix modes of comparable

magnitude, generating spurious regional overlaps or
teleconnections where none exist or distorting exist-

ing overlaps or teleconnections. We have shown the

potential of the ICA technique for separating a com-

plex signal in a more meaningful way. The mixing

problem inherent in the PCA technique and the ar-

tifacts produced by the orthogonality and maximum-
variance constraints of PCA are avoided when rotated

by ICA. Moreover, the use of higher-order statistics

by ICA to determine statistical independence assumes

only the generalization of the decorrelation used in

all classical approaches. Nevertheless, even statisti-

cal independence does not guarantee that the modes

produced by different physical processes will be sep-
arated.

ICA, by finding statistically independent modes,

may provide a better way to explore the unknown dy-
namics of a system. In the case of climate variations,

where the components of the system are probably

coupled (see for example, Salby and Callaghan 2000
or Krishnarnurthy and Goswami 2000), considering

the modes to be as statistically distinct as possible,

even with a linear-ICA, would provide "prototypical"

components that might serve as a guide to further in-

vestigation. As with the classical PCA technique or
classical RT, this first (linear) ICA algorithm is not

able to deal correctly with propagating components

or components mixed nonlinearly. However, the ICA

paradigm (statistical independence) may be a suffi-

ciently powerful concept to be generalized using more
advanced statistical models (e.g., more complicated

neural networks) to treat nonlinear problems. This

requires development of nonlinear solution algorithms
and their testing for cases where the combination of

modes is nonlinear, when components are physically

linked, and for cases with propagating modes.

Appendix: Principal steps of the

algorithm

We adopt here the linear model x = G. a, where

x is the observation, G is the basis function ma-

trix and a is the vector of components to estimate.

The goal of the statistical decomposition technique



is to estimatea matrix J = G -1 (the superscript

-1 represents the pseudo-inverse if G is not square),

the filter matrix, using only a dataset of observations

{x e ; e = 1,...,E}, where E is the number of sam-

ples in the dataset. With thr matrix J applied to

each observation x, the components a are estimated
by a __ h = J • x, and the basis function matrix G is

estimated by the inverse matrix j-1.

The principal steps of the time series analysis by
the ICA technique are:

• Optional pre-processing: The dataset X/ =
{x(j) _ R N ; j : 1,..., l_f}, where t is the time in-

dex and j is the space index (geographical locations),

may require pre-processing: (1) spatial, temporal or

spatio-temporal interpolation to fill in missing data,
(2) filtering of data to suppress undesirable frequen-

cies (noise effects), (3) de-trending to obtain station-

ary data, and (4) removing the annual cycle to ex-

amine interannual anomalies. None of these steps is
required.

• Chose the space for the decomposition: (1) in
time, which is the approach we have adopted in our

study:

x(j) = 91ax(j) +... + gQaQ(j) + ¢,

(2) in space, (3) in frequency, or (4) in a mixture of

these spaces. The observations (a time series or a

geographical field, ...) are denoted, in the follow-
ing, by the d-dimensional vector x e and the dataset

is {x _ ; e=l,...,E}.

• Center the dataset: The observation mean <

x e > is removed from the dataset: x e +-- x _- < x e >.

This step is necessary for statistical techniques where

data arc supposed to have zero-mean like ICA.

• Optional normalization: If the user wants to put
the same statistical weight on each coordinate of the
observation x_: then the dataset can be normalized

by the standard-deviation vector x _ +-- x_/e_.

• Optional Eigen-vector decomposition: The co-

variance (or correlation, in the case of normalized ob-

servations) matrix < x t - x > is estimated from the

dataset. The eigenvalues A (diagonal matrix) and
the eigen-vector matrix V of < x t • x > are then

computed using a classical numerical routine. The

number of PCA or ICA extracted components Q is

chosen by observing the spectrum of eigenvalues.

• Optional PCA solution: The PCA solution is

computed to pre-process the data:

- The d x Q PCA basis function matrix, GpcA,

contains in its columns the first Q eigen-vectors
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of V (the columns of V represent time series in

the time decomposition, and geographical field

in the space decomposition, ... ).

Since, by definition, V -1 = V t, the filter PCA

matrix, JPCA, is equal to the transposed Q x d
basis function matrix, GpcA. Then, the ex-

tracted components, h, that estimate the true

components, a, are the projection of the obser-

vations, x, onto the filters: h = JPCA " X.

The first Q eigenvalues in A represent the vari-

ability explained by each of the Q components.

• ICA solution:

Pre-whitening of dataset: The PCA solution is

used as a pre-processing step: the observations

x e are projected onto the PCA filters: x e +--

JPCA "X e. The ICA algorithm is then applied
into these Q-dimensional data.

The ICA solution, JICA, is initialized as the

identity matrix IQxQ. This, associated to the

previous whitening step, is equivalent to taking
the PCA solution as first guess for ICA.

For the minimization of the criterion specify-

ing the statistical independence, a gradient de-

scent algorithm is used. The classical gradient
descent uses all the samples of the dataset to

compute a mean AJik in Equation (14). This

algorithm is called the deterministic gradient

descent. The major inconvenience of this algo-

rithm is that it can be trapped in local minima.

We use, in our applicaton, the stochastic gradi-

ent descent algorithm that uses the gradient de-

scent formula (14) iteratively in unique random
samples of the dataset. The stochastic charac-

ter of the optimization algorithm allows theoret-
ically, and under some constraint not discussed

here, for the optimization technique to reach the

global minimum of the criterion instead of a lo-

cal minimum (Duflo 1996).

An observation x ¢ is randomly chosen in the

dataset. The propagation through the neural

network (chosen model for the component ex-

traction) is given by: y =/(h) =/(J]cA • x_),
where f(a) = [1 + exp(-j3, a)] -1 is the logistic

function (/3 is a parameter controlling the slope
of the logistic function, we take /3 = 2.0 as in

(Bell and Sejnowski, 1995). The FORTRAN



routineofthisprocessis:
c- - propagationthroughtheneuralnetwork

doi = 1, d

h(O = O.clO

dok=l,d

h(i) = h(i) + JSCA(i, k) * xe(k)

enddo

h(i) = h(i) + bia(i)

y(i) = 1.dO/(1.dO + dexp(-13 • h(i)))

enddo

where bia is the classical bias vector in a MLP

neural network (not shown in the text for sim-

plicity). We use, in this routine, double preci-
sion variables to avoid numerical instabilities.

5 The learning process is then defined as:

c - - transitory quantities

do j= 1,d

hhh(j) = O.dO

dok=l,d

hhh(j) = hhh(j) + JICA (k, j) • tl (k)

enddo

enddo

c - - modification of weights

doi= l,d

doj = 1,d

JicA(i,j) = JicA(i,j) + param*

(JscA (i, j) +/3 * (1.d0 - 2.d0 * y(i)) *&

hhh(j))

enddo

bia(i) = bia(i) + i3 * (1.d0 - 2.d0 • y(i))

enddo

x_'here param is the learning parameter of the

gradient descent optimization (we take param =

0.0005).

6 Stopping criterion: many criteria can be used
to define when to stop the learning cycle. The

simplest criterion is to determine a priori the

number of learning steps. A better criterion is
to determine when the difference between solu-

tion Jsca at time t and at time t + t falls below

some threshold value. Another stopping crite-

rion is to evaluate the statistical independence
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of the extracted components h: cumulants (i.e.

additive higher-order moments) are a practical

way to do that, but this approach is computa-

tionally expensive. The learning algorithm re-

turns to step 4 until the stopping criterion is
reached.

• Analysis of results: When the matrix JSCA has

been determined by ICA, the global ICA filters (tak-

ing into account the PCA pre-processing) are defined

by the Q x d matrix: JaLo = JICA " JPCA

- The projection of data is used to estimate the

components: h --- JGLO " X e

The d x Q ICA basis function matrix GGLO =
JGLO -1 = GpCA "JICA -1 is normalized to ob-

tain normalized ICA basis functions, as in PCA

approach.

Computation of explained variance of each of
t _e basis functions.
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Figure 1. Illustration of the Problems encountered by PCA when observations, having dimension 2 (coordinates X

and Y), come from two components defining ellipses E1 and E2. The line D represents the first PCA axis defining

the first PCA component: A) mixing due to the maximum-explained-variance constraint, B) indeterminacy when

two components ha_,e same variance, and C) mixing due to the non-orthogonality of components.

Figure 2. The component extraction model: the perceptron architecture, where x is the observation, h is the

extracted component vector and y is the network ouput.

Figure 3. Temporal basis functions, 9,: ACTUAL (solid lines), PCA estimates (crossed lines) and ICA estimates

(dotted lines).

Figure 4. The maps of the actual components, ai (left column), of the PCA extracted components, hi (middle

column), and of the ICA extracted components, h, (right column): components number 1-6 from the top to the

bottom, component maps have been centered and normalized for comparison purposes. The continental outlines

are artificial an0 used to make discussion of specific features easier.

Figure 5. Cv uulative percent of explained variance by the PCA components.



Table1. VarianceexplainedbyNoise,
REAL,PCAandICAcomponents

I Component1
2
3
4
5
6

REAL PCA ICA
13.3 24.4 12.7
12.6 14.5 13.0
10.7 10.7 11.3
10.7 8.8 10.2
10.7 6.2 10.3
10.0 3.1 10.0

Noise 33.0 32.3 32.3
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